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Abstract
Keywords Toxic pollutants in wastewater present serious risks to both the environment and
Zinc vanadate, Cerium oxide, human health, highlighting the pressing need for efficient and sustainable
Methylene blue, Photocatalysis, remediation methods. Among the available techniques, photocatalytic degradation
Wastewater treatment has emerged as an environmentally friendly and effective strategy for eliminating
organic contaminants, especially synthetic dyes. In this study, a CeO5/Zn,V,0,
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microscopy (SEM). The CeO./Zn,V,0, composite exhibited markedly superior
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attributed to improved charge carrier separation and increased redox capability,
demonstrating the strong potential of CeOzbased heterojunctions for advanced
wastewater treatment applications.

1.INTRODUCTION

The economy and standard of living have tackle  the challenge of remediating

improved due to the exponential rise in
industrializationl. This process generates
harmful contaminants, including heavy metals,
radioactive nuclides, and organic pollutants2,3.
These contaminants cause the water to smell
and accumulate in aquatic life, allowing it to
enter both animal and human bodies through
the food chain4,5. Therefore, traditional
methods for treating polluted water may not be
very effective in breaking down these harmful
contaminants6-8.  Techniques such as
biodegradation, flocculation, redox methods,
and electrodeposition are examples of
conventional wastewater treatment methods9-
12. However, they have not been particularly
effective at degrading these pollutants.
Advanced  oxidation  processes  (AQOPs)
represent a cuttingedge approach developed to

contaminants in organic wastewater and are
believed to be highly efficientl13. AOPs
specifically target organic pollutants by
generating reactive hydroxyl radicals and
include methods like photo catalysis, Fenton-
like reactions, and ozone oxidationl4,15.
AQPs that are photo catalytically active are
often used to remove organic contaminants
and dyes from industrial wastewater due to
their safety, cost- effectiveness, ecofriendliness,
and high efficacy16-22. Currently, various
photo catalysts, particularly metallic oxide
semiconductors, are utilized for wastewater
treatment because they are easy to synthesize
and stable during chemical reactions. Cerium,
the first member of the lanthanide series, has
garnered attention due to its 4f orbital being

shielded by 5p and 4d electrons23. This
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characteristic is significant for catalytic studies,
and another advantage for selection is its
existence in both +3 and +4 oxidation states23.
Ceria, also known as cerium oxide (CeO2), is a
metal oxide semiconductor widely used for
degrading wastewater contaminants.
Additionally, it finds applications in various
industries, including solar cells, oxygen sensors,
and fuel cells. Because of its reversible
Ce+3/Ce+4 pairings, ceria demonstrates
remarkable catalytic power, photo-corrosion
resistance, and a high capacity for oxygen
transport. Consequently, ceria is employed as a
potent photocatalyst 24,25. Unfortunately,
ceria's bandgap of 2.8-3.2 eV, which is high for
photocatalysts, limits its applicability, as it
primarily absorbs radiation in the UV range.
Since visible light is less expensive, several
techniques have been developed to reduce the
bandgap for visible light utilization. CeO2-
based nano-photocatalysts are commonly used
for carbon dioxide conversion, water splitting,
air purification, and pollutant
photodegradation. Over the past decade,
heterometal oxides, particularly vanadates, have
gained attention for their versatile behavior in
photocatalysis26-28. In this regard, zinc
vanadates have gained particular importance
due to their photocatalytic capability for
utilizing visible light and their ability to treat
waste materials with refractory pollutants29-
33. Other advantages include low cost, non-
toxic nature, appropriate band gap, charge
mobility, unique hexagonal structure, and
strong oxidation potential (0.3 eV) with high
chemical stability34-36

In this study, we aim to synthesize a
Ce02/Zn2V207 heterostructure using the
coprecipitation method to enhance
photocatalytic ability for the degradation of
Methylene blue in sunlight. The synthesized
material will be systematically characterized
using XRD to confirm crystallinity, UV-Vis
spectroscopy for bandgap analysis, FTIR for
functional group identification, and SEM for
morphological assessment. The photocatalytic
performance will be evaluated to determine the
efficiency of the composite compared to pure
Zn2V207, focusing on  charge carrier

separation and redox processes. This work
establishes CeO2-based heterostructures as
promising candidates for advanced wastewater
treatment applications.

1.LEXPERIMENTAL

1.1. Chemicals

The chemicals used in this experiment,
including cerium nitrate [Ce (NOs3) 3],
ammonium metavanadate (NH4VO3), sodium
hydroxide (NaOH), polyethylene glycol, and
methylene blue (Cis Hig Nz S CI), were
obtained from Sigma Aldrich and were
employed without further purification.

1.2. Material Synthesis

Zinc vanadate is synthesized using a non-
hydrothermal method. A 0.1 M solution of
ammonium metavanadate (NH,VO3) was
prepared by dissolving 2.23 g of NH,VO3 in
200 mL of distilled water. Separately, a 0.15 M
solution of zinc nitrate was obtained by
dissolving 8.91 g of zinc nitrate in 200 mL of
distilled water. The two solutions were mixed
dropwise at 70°C under continuous stirring for
30 minutes, resulting in the formation of a
strongly orange-colored ZnVOy, precipitate. The
obtained sample was thoroughly washed, dried
at 75 °C for 40 minutes, and subsequently
annealed at 600 °C for 2 hours, yielding an
orange-golden Zn2V207 powder.

For the synthesis of CeO2/ Zn2V207,20.2 M
solution of cerium nitrate [Ce (NOj3) 3] was
obtained by dissolving 4.3 g of Ce (NO3) 3 in
50 mL of deionized water. To this solution, 2
mL of polyethylene glycol (C; n H 4 n;20n41)
was added, followed by stirring for 30 minutes.
Fine zinc vanadate powder was then introduced
in varying amounts for different doping levels:
0.825 g for 10%, 1.704 g for 20%, 2.55 ¢ for
30%, 3.4 g for 40%, and 4.26 g for 50%. For
30 minutes, the mixture was again stirred. A 1
M solution of sodium hydroxide (NaOH) was
prepared by dissolving 2 g of NaOH in 50 mL
of distilled water and was added dropwise to
the cerium nitrate solution until the pH
reached 9. The mixture was stirred for another
30 minutes, and the resulting precipitate was
washed with ethanol, collected, and dried at
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110 °C in an oven. The dried sample was then analysis. A systematic illustration of the
calcined at 480 °C for 2 hours, ground into synthesis process is presented in Figure 1.
fine particles, and stored for the next steps of

1l

—

Add 2 ml PEG in Addition of Zinc
Cerium Nitrate

Vanadate

Figure 1. Schematic Illustration of CeO2:Zn2V207

1.1. Characterization properties were analyzed through UV.visible

For characterization, various analytical techniques
were employed. To ascertain the material's
crystalline structure, X-ray diffraction (XRD) was
performed using a Bruker D-8 X-ray diffractometer
with CuKa radiation (A = 1.54 A). The
morphology of the surface was examined using a
scanning electron microscope  (SEM). Optical

1.2. Photocatalytic Activity

For the photocatalytic experiments, methylene blue
(C16H18CIN3S) was selected as a model pollutant
for the catalytic degradation study. A 10-ppm
methylene blue solution was prepared, and 0.1 g of
the photocatalyst was added. The solution was
continually swirled in the dark before irradiation

spectroscopy using an LX211D Lab Dex double-
beam spectrophotometer. Functional groups in the
composite materials were identified using Fourier-

transform infrared (FTIR) spectroscopy
(PerkinElmer, L1600107).

to attain adsorption and desorption equilibrium
between the dye and catalyst. By subjecting the
solution to a 400 W halogen lamp, the
photocatalytic reaction was started. Five-milliliter
samples were taken out every ten minutes and
subjected to UV-visible spectroscopic analysis to
measure the efficiency of degradation.

The percentage degradation was calculated using the pseudo-first-order kinetic equation:

Cc =C
Degradation (%) = (
Co) x 100

https://jcrij.org | Zahir & Thsan, 2025 | Page 15


https://portal.issn.org/resource/ISSN/3106-7905
https://portal.issn.org/resource/ISSN/3106-7891

Journal of Chemical Research and Innovation

ISSN: 3106-7905 | 3106-7891
Volume 2, Issue 3, 2025

where Co represents the initial dye concentration,
and Ct denotes the dye concentration at time t.

2. RESULT AND DISCUSSION

2.1. XRD Analysis

X-ray diffraction (XRD) analysis was performed to
assess the phase purity and crystal structure of
Ce02, Zn2V207, and their composites with
varying Ce content (10-50 wt%). The XRD
patterns, presented in the attached figures, confirm
the structural characteristics of Zn2V207 (JCPDS
Card # 00-029-1396), CeO2(JCPDS Card # 01-081-
0792), and their hybrid composites. These
materials contain Zn, V, O, and Ce elements,
indicating the coexistence of zinc vanadate and

cerium oxide within the composite structure
(Figure 2). The XRD spectra exhibited four
distinctive peaks, with two attributed to zinc
vanadate, centered around 8000 eV. Additional
peaks at 1021 eV and 1044 eV represent the 2D
structure of Zn2V207Zn,V,05. In the CeO2 (40
wt%)/ Zn2V207 composite, a slight positive shift
(70.3 eV) was observed in the Zn 2p, V 2p, and O
Is peak positions compared to pure Zn2V207.
This shift suggests a change in the chemical
environment of Zn, V, and O, likely due to strong

interfacial interactions between
In2V207Zn,V,0; and CeO2, leading to the
formation of the CeO2/ Zn2V207

heterojunction.

Figure 2. XRD Graph pattern of CeO2, Zn2V207 & their hybrid composites.
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2.2. FTIR Analysis

Fourier Transform Infrared Spectroscopy (FTIR)
analysis confirmed the formation of Zn2V207 and
CeO2 phases, with characteristic peaks varying
based on Ce incorporation. Pure Zn2V207
exhibited peaks at 828 ¢m™! and 641 cm™!
(tetrahedral VO, vibrations), 3757 cm™! (O-H
stretching), and 493 cm™ (Zn-O stretching). For
pure CeO2 nanoparticles, key peaks included 1553
cm™! (O-H bending/stretching of adsorbed water),
1356 cm™!, 1055 cm™! (=C-H in-plane vibration),
and 862 cm™! (Ce-O stretching). With increasing Ce
content in Zn2V207, additional peaks appeared at
1636 cm™ (H-O-H bond), 1370-

1366 cm™ (Ce-O-Ce and Ce-O stretching), 1154
cm™! (Ce-O stretching), 1119-1123 cm™ (Ce-O-Ce
bond), 931-922 cm™!, 828 cm™!, 774 cm™! (Zn-V
bond), and 779-720 cm™! (V-O-Zn and V-OV
modes). Hydroxyl groups were indicated by
absorptions at 3776 cm™!, 3742 cm™!, and 3246
ecm™l. A gradual decrease in the 515 cm™! peak
suggested interfacial interactions between CeO?2
and Zn2V207, while the V-O-V peak shifted lower
with increasing Ce content, accompanied by the
emergence of a peak at 563 cm™!. These spectral
variations confirm structural modifications due to
Ce incorporation (Figure 3).
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Figure 3. FTIR Spectra of Ce

2.3. Optical Analysis

UV.visible spectroscopy was performed to estimate the
activation wavelength of Zinc Vanadate, Cerium
Oxide, and Ce-doped Zinc Vanadate at varying
concentrations. The band gap decreased to 2.1 V of
50% CeO2/ Zn2V207. The calculation of the optical
band gap was achieved by using the Tauc plot method *'.
The equation E = he/A, where h is Planck's constant, ¢
is the speed of light, and A is the wavelength, is used to
plot energy (E) on the x-axis. The y-axis represents the
product of energy and the absorption coefficient,
calculated using a corresponding equation. The UV-
visible spectrum, shown in Figure 5, was used to derive
these values.

2.4.Photocatalytic dye degradation
The photodegradation ability of the synthesized
photocatalysts was evaluated using a 0.05 mM

02,Zn2V207 and their composite.

methylene blue solution as a model pollutant. Upon
exposure to a solar irradiation lamp, the solution
reached equilibrium, initiating the photodegradation
process. Initially blue, the solution gradually faded
to colourless, indicating degradation. To quantify this
process, aliquots were extracted every 10 minutes and
analysed via UV-visible spectroscopy to determine the
remaining methylene blue concentration. Figure 6
illustrates the degradation of methylene blue by pure
Zinc Vanadate, pure Cerium Oxide, and Ce-doped
Zn2V207 composites with varying Ce content (10-
50%). A progressive decline in the absorption peak of
methylene observed each interval,
confirming degradation. Complete degradation of 50%
Ce02/ Zn2V207, ie., 92%, occurred within 90
minutes, as evidenced by the transition from blue to a
colourless solution.

blue was at
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Figure 5. Photocatalytic results of Pure CeO2, Zn2V207 and their composites.
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2.5. SEM Analysis

Scanning Electron Microscopy (SEM) was employed
to examine the morphology and microstructure of
pure CeO2, pure Zn2V207, and their hetero-doped
Zn2V207 exhibited

interconnected nanosheets, while CeO2 consisted of

nanocomposites.

agglomerated nanoparticles. CeO2 nanoparticles
were immobilized on the surface of the 3D Zn2V207
framework, forming a well-defined heterojunction.
With d-spacing values of 0.31 nm and 0.255 nm,

respectively, high-resolution imaging showed two
different kinds of lattice fringes that corresponded to
the crystal planes of CeO2 and the (122) plane of
Zn2V207. This confirmed the presence of a
heterojunction, facilitating charge migration at the
interface. Elemental mapping in Figure 6
demonstrated the uniform distribution of Ce, V, O,
and Zn within the observed region. The SEM results
reveal the successful construction of a 0D/3D

Ce0?2/ In2V207 heterojunction hybrid.

Figure 6. SEM Analysis of (a)CeO2 (b)Zn2V207(C)50% Ce02:Zn2V207(d)50% CeO2:Zn2V207

3. CONCLUSION

This study successfully synthesized and characterized
Ce02/7Zn2V207 nanocomposites, confirming their
structural integrity and enhanced photocatalytic
performance. XRD and FTIR analyses verified phase
purity, while SEM revealed a well-defined
heterojunction facilitating charge separation. UV-
visible spectroscopy indicated that Ce doping
influenced the electronic structure, improving light
absorption. Photocatalytic experiments
demonstrated superior methylene blue degradation,
with complete degradation achieved in 90 minutes,
attributed to efficient charge carrier migration and
reduced recombination. These findings highlight the
potential of CeO2/Zn2V207 heterojunctions as
effective ~ photocatalysts ~ for  environmental
remediation.
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